The protective role of commensal gut microbes and their metabolites against bacterial pathogens.

Cheng L, Correia MSP, Higdon SM, Romero Garcia F, Tsiara I, Joffré E, Sjöling Å, Boulund F, Norin EL, Engstrand L, Globisch D, Du J

Gut Microbes 16 (1) 2356275 [2024-05-26; online 2024-05-26]

Multidrug-resistant microorganisms have become a major public health concern around the world. The gut microbiome is a gold mine for bioactive compounds that protect the human body from pathogens. We used a multi-omics approach that integrated whole-genome sequencing (WGS) of 74 commensal gut microbiome isolates with metabolome analysis to discover their metabolic interaction with Salmonella and other antibiotic-resistant pathogens. We evaluated differences in the functional potential of these selected isolates based on WGS annotation profiles. Furthermore, the top altered metabolites in co-culture supernatants of selected commensal gut microbiome isolates were identified including a series of dipeptides and examined for their ability to prevent the growth of various antibiotic-resistant bacteria. Our results provide compelling evidence that the gut microbiome produces metabolites, including the compound class of dipeptides that can potentially be applied for anti-infection medication, especially against antibiotic-resistant pathogens. Our established pipeline for the discovery and validation of bioactive metabolites from the gut microbiome as novel candidates for multidrug-resistant infections represents a new avenue for the discovery of antimicrobial lead structures.

Daniel Globisch

PubMed 38797999

DOI 10.1080/19490976.2024.2356275

Crossref 10.1080/19490976.2024.2356275

pmc: PMC11135852


Publications 9.5.1