Functional dissection of inherited non-coding variation influencing multiple myeloma risk.

Ajore R, Niroula A, Pertesi M, Cafaro C, Thodberg M, Went M, Bao EL, Duran-Lozano L, Lopez de Lapuente Portilla A, Olafsdottir T, Ugidos-Damboriena N, Magnusson O, Samur M, Lareau CA, Halldorsson GH, Thorleifsson G, Norddahl GL, Gunnarsdottir K, Försti A, Goldschmidt H, Hemminki K, van Rhee F, Kimber S, Sperling AS, Kaiser M, Anderson K, Jonsdottir I, Munshi N, Rafnar T, Waage A, Weinhold N, Thorsteinsdottir U, Sankaran VG, Stefansson K, Houlston R, Nilsson B

Nat Commun 13 (1) 151 [2022-01-10; online 2022-01-10]

Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.

Abhishek Niroula

DDLS Fellow

PubMed 35013207

DOI 10.1038/s41467-021-27666-x

Crossref 10.1038/s41467-021-27666-x

pmc: PMC8748989
pii: 10.1038/s41467-021-27666-x


Publications 9.5.0