Tumorigenic activity of alternative per- and polyfluoroalkyl substances (PFAS): Mechanistic in vitro studies.

Pierozan P, Cattani D, Karlsson O

Sci. Total Environ. 808 (-) 151945 [2022-02-20; online 2021-11-27]

Environmental contaminants including long-chain per- and polyfluoroalkyl substances (PFAS) have been linked to cancer, which is a central cause of mortality in humans and many wildlife species. Today shorter-chain PFAS are extensively used as replacement compounds and commonly found in the environment. Mechanistic studies are important for a better understanding of their toxicological potential and possible role in cancer etiology. Here, we treated normal human breast epithelial cells (MCF-10A) with 500 pM to 500 μM of perfluorohexane sulfonate (PFHxS), undecafluorohexanoic acid (PFHxA), hexafluoropropylene oxide-dimer acid (GenX), perfluoro 3,6 dioxaoctanoic acid (PFO2OA), heptafluorobutyric acid (HFBA) and perfluorobutanesulfonic acid (PFBS) for 72 h to investigate potential effects on cell proliferation and neoplastic transformation. PFHxA, GenX, PFO2OA, HFBA and PFBS induced no alterations compared to controls at any of the concentrations tested. Exposure to 100 μM PFHxS on the other hand was shown to affect important regulatory cell-cycle proteins (cyclin D1, CDK6, p27, p53 and ERK) and induced cell proliferation, at least in part through activation of the constitutive androstane receptor (CAR) and the peroxisome proliferator-activated receptor alpha (PPARα). PFHxS also altered histone modifications and induced cell malignance by reducing the levels of adhesion proteins (E-cadherin and β-integrin) and promoting cell migration and invasion. These results demonstrate that five out of six alternative PFAS tested are clearly less harmful to MCF-10A cells than previously studied PFOS and PFOA, but raise concerns about PFHxS that also has been associated with breast cancer in epidemiological studies.

Oskar Karlsson

SciLifeLab Fellow

PubMed 34843762

DOI 10.1016/j.scitotenv.2021.151945

Crossref 10.1016/j.scitotenv.2021.151945

pii: S0048-9697(21)07021-2

Publications 9.5.0