Modulated fluorescence of colloidal quantum dots embedded in a porous alumina membrane.

Xu H, Li L, Manneberg O, Russom A, Gylfason KB, Brismar H, Fu Y

J Phys Chem B 117 (45) 14151-14156 [2013-11-14; online 2013-10-31]

The fluorescence spectrum of CdSe core-CdS/ZnS shell colloidal quantum dots (QDs) embedded in porous alumina membrane was studied. Small peaks, superimposed on the principal QD fluorescence spectrum, were observed. Finite-difference time-domain simulation indicates that the QD point radiation emitting from within the membrane is strongly modulated by the photonic band structure introduced by the membrane pores, leading to the observed fine spectral features. Moreover, the principal QD fluorescence peak red-shifted when the optical excitation power was increased, which is attributed to QD material heating due to emitted phonons when the photoexcited electron and hole relax nonradiatively from high-energy states to the ground exciton state before fluorescence.

Affiliated researcher

PubMed 24134567

DOI 10.1021/jp409132e

Crossref 10.1021/jp409132e

Publications 7.1.2