Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD.

Hewitt G, Borel V, Segura-Bayona S, Takaki T, Ruis P, Bellelli R, Lehmann LC, Sommerova L, Vancevska A, Tomas-Loba A, Zhu K, Cooper C, Fugger K, Patel H, Goldstone R, Schneider-Luftman D, Herbert E, Stamp G, Brough R, Pettitt S, Lord CJ, West SC, Ahel I, Ahel D, Chapman JR, Deindl S, Boulton SJ

Mol. Cell 81 (4) 767-783.e11 [2021-02-18; online 2020-12-16]

Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.

SciLifeLab Fellow

Sebastian Deindl

PubMed 33333017

DOI 10.1016/j.molcel.2020.12.006

Crossref 10.1016/j.molcel.2020.12.006

pii: S1097-2765(20)30898-4
pmc: PMC7895907


Publications 7.2.9