Hammond M, Nong RY, Ericsson O, Pardali K, Landegren U
PLoS ONE 7 (7) e40405 [2012-07-10; online 2012-07-10]
Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.
PubMed 22808155
DOI 10.1371/journal.pone.0040405
Crossref 10.1371/journal.pone.0040405
pii: PONE-D-12-05955
pmc: PMC3393744