Slow degradation in phagocytic astrocytes can be enhanced by lysosomal acidification.

Lööv C, Mitchell CH, Simonsson M, Erlandsson A

Glia 63 (11) 1997-2009 [2015-11-00; online 2015-06-12]

Inefficient lysosomal degradation is central in the development of various brain disorders, but the underlying mechanisms and the involvement of different cell types remains elusive. We have previously shown that astrocytes effectively engulf dead cells, but then store, rather than degrade the ingested material. In the present study we identify reasons for the slow digestion and ways to accelerate degradation in primary astrocytes. Our results show that actin-rings surround the phagosomes for long periods of time, which physically inhibit the phago-lysosome fusion. Furthermore, astrocytes express high levels of Rab27a, a protein known to reduce the acidity of lysosomes by Nox2 recruitment, in order to preserve antigens for presentation. We found that Nox2 colocalizes with the ingested material, indicating that it may influence antigen processing also in astrocytes, as they express MHC class II. By inducing long-time acidification of astrocytic lysosomes using acidic nanoparticles, we could increase the digestion of astrocyte-ingested, dead cells. The degradation was, however, normalized over time, indicating that inhibitory pathways are up-regulated in response to the enhanced acidification. GLIA 2015;63:1997-2009.

Affiliated researcher

PubMed 26095880

DOI 10.1002/glia.22873

Crossref 10.1002/glia.22873

Publications 7.1.2