PDGFRβ translocates to the nucleus and regulates chromatin remodeling via TATA element-modifying factor 1.

Papadopoulos N, Lennartsson J, Heldin CH

J. Cell Biol. 217 (5) 1701-1717 [2018-05-07; online 2018-03-15]

Translocation of full-length or fragments of receptors to the nucleus has been reported for several tyrosine kinase receptors. In this paper, we show that a fraction of full-length cell surface platelet-derived growth factor (PDGF) receptor β (PDGFRβ) accumulates in the nucleus at the chromatin and the nuclear matrix after ligand stimulation. Nuclear translocation of PDGFRβ was dependent on PDGF-BB-induced receptor dimerization, clathrin-mediated endocytosis, β-importin, and intact Golgi, occurring in both normal and cancer cells. In the nucleus, PDGFRβ formed ligand-inducible complexes with the tyrosine kinase Fer and its substrate, TATA element-modifying factor 1 (TMF-1). PDGF-BB stimulation decreased TMF-1 binding to the transcriptional regulator Brahma-related gene 1 (Brg-1) and released Brg-1 from the SWI-SNF chromatin remodeling complex. Moreover, knockdown of TMF-1 by small interfering RNA decreased nuclear translocation of PDGFRβ and caused significant up-regulation of the Brg-1/p53-regulated cell cycle inhibitor

Affiliated researcher

QC bibliography QC xrefs

PubMed 29545370

DOI 10.1083/jcb.201706118

Crossref 10.1083/jcb.201706118

jcb.201706118

pmc PMC5940298