Fragmentation of positively-charged biological ions activated with a beam of high-energy cations.

Chingin K, Makarov A, Denisov E, Rebrov O, Zubarev RA

Anal. Chem. 86 (1) 372-379 [2014-01-07; online 2013-12-13]

First results are reported on the fragmentation of multiply protonated polypeptide ions produced in electrospray ionization mass spectrometry (ESI-MS) with a beam of high-energy cations as a source of activation. The ion beam is generated with a microwave plasma gun installed on a benchtop Q Exactive mass spectrometer. Precursor polypeptide ions are activated when trapped inside the collision cell of the instrument (HCD cell), and product species are detected in the Orbitrap analyzer. Upon exposure to the beam of air plasma cations (∼100 μA, 5 s), model precursor species such as multiply protonated angiotensin I and ubiquitin dissociated across a variety of pathways. Those pathways include the cleavages of C-CO, C-N as well as N-Cα backbone bonds, accordingly manifested as b/y, a, and c/z fragment ion series in tandem mass spectra. The fragmentation pattern observed includes characteristic fragments of collision-induced dissociation (CID) (b/y/a fragments) as well as electron capture/transfer dissociation (ECD, ETD) (c/z fragments), suggesting substantial contribution of both vibrational and electronic excitation in our experiments. Besides backbone cleavages, notable amounts of nondissociated precursor species were observed with reduced net charge, formed via electron or proton transfer between the colliding partners. Peaks corresponding to increased charge states of the precursor ions were also detected, which is the major distinctive feature of ion beam activation.

Affiliated researcher

PubMed 24236851

DOI 10.1021/ac403193k

Crossref 10.1021/ac403193k