Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks.

Klinger CM, Spang A, Dacks JB, Ettema TJ

Mol. Biol. Evol. 33 (6) 1528-1541 [2016-06-00; online 2016-02-17]

In contrast to prokaryotes, eukaryotic cells are characterized by a complex set of internal membrane-bound compartments. A subset of these, and the protein machineries that move material between them, define the membrane-trafficking system (MTS), the emergence of which represents a landmark in eukaryotic evolution. Unlike mitochondria and plastids, MTS organelles have autogenous origins. Much of the MTS machinery is composed of building blocks, including small GTPase, coiled-coil, beta-propeller + alpha-solenoid, and longin domains. Despite the identification of prokaryotic proteins containing these domains, only few represent direct orthologues, leaving the origins and early evolution of the MTS poorly understood. Here, we present an in-depth analysis of MTS building block homologues in the composite genome of Lokiarchaeum, the recently discovered archaeal sister clade of eukaryotes, yielding several key insights. We identify two previously unreported Eukaryotic Signature Proteins; orthologues of the Gtr/Rag family GTPases, involved in target of rapamycin complex signaling, and of the RLC7 dynein component. We could not identify golgin or SNARE (coiled-coil) or beta-propeller + alpha-solenoid orthologues, nor typical MTS domain fusions, suggesting that these either were lost from Lokiarchaeum or emerged later in eukaryotic evolution. Furthermore, our phylogenetic analyses of lokiarchaeal GTPases support a split into Ras-like and Arf-like superfamilies, with different prokaryotic antecedents, before the advent of eukaryotes. While no GTPase activating proteins or exchange factors were identified, we show that Lokiarchaeum encodes numerous roadblock domain proteins and putative longin domain proteins, confirming the latter's origin from Archaea. Altogether, our study provides new insights into the emergence and early evolution of the eukaryotic membrane-trafficking system.

Affiliated researcher

PubMed 26893300

DOI 10.1093/molbev/msw034

Crossref 10.1093/molbev/msw034

pii: msw034


Publications 9.5.0