The binding of Chp2's chromodomain to methylated H3K9 is essential for Chp2's role in heterochromatin assembly in fission yeast.

Maksimov V, Oya E, Tanaka M, Kawaguchi T, Hachisuka A, Ekwall K, Bjerling P, Nakayama JI

PLoS ONE 13 (8) e0201101 [2018-08-15; online 2018-08-15]

The binding of heterochromatin protein 1 (HP1) to lysine 9-methylated histone H3 (H3K9me) is an essential step in heterochromatin assembly. Chp2, an HP1-family protein in the fission yeast Schizosaccharomyces pombe, is required for heterochromatic silencing. Chp2 recruits SHREC, a multifunctional protein complex containing the nucleosome remodeler Mit1 and the histone deacetylase Clr3. Although the targeting of SHREC to chromatin is thought to occur via two distinct modules regulated by the SHREC components Chp2 and Clr2, it is not clear how Chp2's chromatin binding regulates SHREC function. Here, we show that H3K9me binding by Chp2's chromodomain (CD) is essential for Chp2's silencing function and for SHREC's targeting to chromatin. Cells expressing a Chp2 mutant with defective H3K9me binding (Chp2-W199A) have a silencing defect, with a phenotype similar to that of chp2-null cells. Genetic analysis using a synthetic silencing system revealed that a Chp2 mutant and SHREC-component mutants had similar phenotypes, suggesting that Chp2's function also affects SHREC's chromatin binding. Size-exclusion chromatography of native protein complexes showed that Chp2-CD's binding of H3K9me3 ensures Clr3's chromatin binding, and suggested that SHREC's chromatin binding is mediated by separable functional modules. Interestingly, we found that the stability of the Chp2 protein depended on the Clr3 protein's histone deacetylase activity. Our findings demonstrate that Chp2's H3K9me binding is critical for SHREC function and that the two modules within the SHREC complex are interdependent.

Affiliated researcher

PubMed 30110338

DOI 10.1371/journal.pone.0201101

Crossref 10.1371/journal.pone.0201101

pii: PONE-D-17-44923
pmc: PMC6093649

Publications 7.1.2