Koch S, van Meeteren LA, Morin E, Testini C, Weström S, Björkelund H, Le Jan S, Adler J, Berger P, Claesson-Welsh L
Dev. Cell 28 (6) 633-646 [2014-03-31; online 2014-03-20]
Neuropilin 1 (NRP1) modulates angiogenesis by binding vascular endothelial growth factor (VEGF) and its receptor, VEGFR2. We examined the consequences when VEGFR2 and NRP1 were expressed on the same cell (cis) or on different cells (trans). In cis, VEGF induced rapid VEGFR2/NRP1 complex formation and internalization. In trans, complex formation was delayed and phosphorylation of phospholipase Cγ (PLCγ) and extracellular regulated kinase 2 (ERK2) was prolonged, whereas ERK1 phosphorylation was reduced. Trans complex formation suppressed initiation and vascularization of NRP1-expressing mouse fibrosarcoma and melanoma. Suppression in trans required high-affinity, steady-state binding of VEGF to NRP1, which was dependent on the NRP1 C-terminal domain. Compatible with a trans effect of NRP1, quiescent vasculature in the developing retina showed continuous high NRP1 expression, whereas angiogenic sprouting occurred where NRP1 levels fluctuated between adjacent endothelial cells. Therefore, through communication in trans, NRP1 can modulate VEGFR2 signaling and suppress angiogenesis.
PubMed 24656741
DOI 10.1016/j.devcel.2014.02.010
Crossref 10.1016/j.devcel.2014.02.010
pii: S1534-5807(14)00126-9