Methods for estimation of model accuracy in CASP12.

Elofsson A, Joo K, Keasar C, Lee J, Maghrabi AHA, Manavalan B, McGuffin LJ, Ménendez Hurtado D, Mirabello C, Pilstål R, Sidi T, Uziela K, Wallner B

Proteins 86 Suppl 1 (-) 361-373 [2018-03-00; online 2017-10-17]

Methods to reliably estimate the quality of 3D models of proteins are essential drivers for the wide adoption and serious acceptance of protein structure predictions by life scientists. In this article, the most successful groups in CASP12 describe their latest methods for estimates of model accuracy (EMA). We show that pure single model accuracy estimation methods have shown clear progress since CASP11; the 3 top methods (MESHI, ProQ3, SVMQA) all perform better than the top method of CASP11 (ProQ2). Although the pure single model accuracy estimation methods outperform quasi-single (ModFOLD6 variations) and consensus methods (Pcons, ModFOLDclust2, Pcomb-domain, and Wallner) in model selection, they are still not as good as those methods in absolute model quality estimation and predictions of local quality. Finally, we show that when using contact-based model quality measures (CAD, lDDT) the single model quality methods perform relatively better.

Affiliated researcher

PubMed 28975666

DOI 10.1002/prot.25395

Crossref 10.1002/prot.25395

Publications 7.1.2