Functional association networks as priors for gene regulatory network inference.

Studham ME, Tjärnberg A, Nordling TE, Nelander S, Sonnhammer EL

Bioinformatics 30 (12) i130-i138 [2014-06-15; online 2014-06-17]

Gene regulatory network (GRN) inference reveals the influences genes have on one another in cellular regulatory systems. If the experimental data are inadequate for reliable inference of the network, informative priors have been shown to improve the accuracy of inferences. This study explores the potential of undirected, confidence-weighted networks, such as those in functional association databases, as a prior source for GRN inference. Such networks often erroneously indicate symmetric interaction between genes and may contain mostly correlation-based interaction information. Despite these drawbacks, our testing on synthetic datasets indicates that even noisy priors reflect some causal information that can improve GRN inference accuracy. Our analysis on yeast data indicates that using the functional association databases FunCoup and STRING as priors can give a small improvement in GRN inference accuracy with biological data.

Affiliated researcher

PubMed 24931976

DOI 10.1093/bioinformatics/btu285

Crossref 10.1093/bioinformatics/btu285

pii: btu285
pmc: PMC4058914