Association of Adipose Tissue Fatty Acids With Cardiovascular and All-Cause Mortality in Elderly Men.

Iggman D, Ärnlöv J, Cederholm T, Risérus U

JAMA Cardiol 1 (7) 745-753 [2016-10-01; online 2016-10-21]

The major polyunsaturated fatty acids in adipose tissue objectively reflect long-term dietary intake, and may provide more reliable information than would self-reported intake. Whether adipose tissue fatty acids predict cardiovascular and all-cause mortality needs investigation. To investigate associations between adipose tissue fatty acids and cardiovascular and overall mortality in a cohort of elderly men. We hypothesized that polyunsaturated fatty acids reflecting dietary intake, are inversely associated with cardiovascular and all-cause mortality. In the Swedish cohort study Uppsala Longitudinal Cohort of Adult Men, buttock fatty acid composition was analyzed by gas-liquid chromatography in 1992 to 1993 and 2008. The study participants were followed during 11 311 person-years, between 1991 and 2011 (median follow-up, 14.8 years). In this community-based study that took place from 1970 to 1973, all men born in 1920 to 1924 in Uppsala, Sweden, were invited and 2322 (82%) were included (at age 50 years). At the reinvestigation at age 71 years, 1221 (73%) of the 1681 invited men participated. Adipose tissue biopsy specimens were taken in a subsample of 853 men. There was no loss to follow-up. Adipose tissue proportions of 4 polyunsaturated fatty acids that were considered to mainly reflect dietary intake (linoleic acid, 18:2n-6; α-linolenic acid, 18:3n-3; eicosapentaenoic acid, 20:5n-3; and docosahexaenoic acid, 22:6n-3) comprised primary analyses, and all other available fatty acids were secondary analyses. Hazard ratios (HRs) for cardiovascular and all-cause mortality using Cox proportional hazards regression analyses, performed in 2015. Among the 853 Swedish men, there were 605 deaths, of which 251 were cardiovascular deaths. After adjusting for risk factors, none of the 4 primary fatty acids were associated with cardiovascular mortality (HR, 0.92-1.05 for each standard deviation increase; P ≥ .27). Linoleic acid was inversely associated with all-cause mortality (HR, 0.90; 95% CI, 0.82-0.98; P = .02) and directly associated with intake (P < .001). In secondary analyses, palmitoleic acid, 16:1n-7 (HR, 1.11; 95% CI, 1.02-1.21; P = .02) was associated with higher all-cause mortality, whereas heptadecanoic acid, 17:0, tended to be associated with lower all-cause mortality (HR, 0.89; 95% CI, 0.79-1.00; P = .05). Arachidonic:linoleic acid ratio was associated with both cardiovascular (HR, 1.15; 95% CI, 1.05-1.31; P = .04) and all-cause (HR, 1.13; 95% CI, 1.04-1.23; P = .005) mortality. Adipose tissue linoleic acid was inversely associated with all-cause mortality in elderly men, although not significantly with cardiovascular mortality.

Affiliated researcher

PubMed 27541681

DOI 10.1001/jamacardio.2016.2259

Crossref 10.1001/jamacardio.2016.2259

pii: 2545081


Publications 7.1.2