Yi Z, Zhang Y, Kootala S, Hilborn J, Ossipov DA
ACS Appl Mater Interfaces 7 (2) 1194-1206 [2015-01-21; online 2015-01-09]
A novel approach to hyaluronic acid (HA) hydrogel with a chemical gradient of the matrix-linked bisphosphonate (BP) groups is presented. The method consists of two steps, including initial generation of physical gradient patterns of BPs by diffusion of BP acrylamide reagent into HA matrix carrying thiol groups and subsequent chemical immobilization of the BP groups by UV light-triggered thiol-ene addition reaction. This gradient hydrogel permits spatial three-dimensional regulation of secondary interactions of different molecules with the polymer matrix. In particular, graded amounts of cytochrome c (cyt c) were reversibly absorbed in the hydrogel, thus enabling the subsequent spatially controlled release of the therapeutic protein. The obtained patterned hydrogel acts also as a unique reactor in which peroxidase-catalyzed oxidation of a substrate is determined by spatial position of the enzyme (cyt c) in the matrix resulting in a range of product concentrations. As an example, matrix template-assisted oxidation of 3,3',5,5'-tetarmethylbenzydine (TMB) in the presence of H2O2 occurs simultaneously at different rates within the gradient hydrogel. Moreover, calcium binding to the gradient HABP hydrogel reflects the pattern of immobilized BP groups eventually leading to the graded biomineralization of the matrix. This approach opens new possibilities for use of hydrogels as dynamic models for biologic three-dimensional structures such as extracellular matrix.
PubMed 25575380
DOI 10.1021/am506926w
Crossref 10.1021/am506926w